ALGEBRAIC TOPOLOGY I WS23/24, HOMEWORK SHEET 6

DEADLINE: FRIDAY, NOVEMBER 24TH

Problem 1. Let X be a connected CW-complex with basepoint $x \in X$. Recall that for each $n \geq 1$, $\pi_1(X, x)$ acts on $\pi_n(X, x)$. In the homotopy category, this induces a natural action of $\pi_1 X$ on $K(\pi_n(X, x), n)$, which further induces an action on homology

$$\alpha: \pi_1(X, x) \times H_*K(\pi_n(X, x), n) \to H_*K(\pi_n(X, x), n).$$

Recall that for each $n \ge 2$, the Postnikov tower gives a fibre sequence

$$K(\pi_n X, n) \to \tau_{\leq n} X \to \tau_{\leq n-1} X.$$

Let $f_{n-1}: X \to \tau_{\leq n-1}$ be the canonical map, and let $y = f_{n-1}(x)$. Then $\pi_1(\tau_{\leq n-1}X, y)$ acts on the homology of the homotopy fibre at the point y, i.e., $K(\pi_n(X, x), n)$. Let

$$\beta: \pi_1(\tau_{\leq n-1}X, y) \times H_*K(\pi_n(X, x), n) \to H_*K(\pi_n(X, x), n)$$

denote this action.

Show that the two actions α and β on homology are the same, under the identification

$$(f_{n-1})_* \colon \pi_1(X, x) \xrightarrow{=} \pi_1(\tau_{\leq n-1}X, y).$$

Problem 2. As discussed in the lecture, the first *p*-torsion class in π_*S^3 is found in degree 2*p*. Recall that for all $n \ge 3$, the Hopf map $\eta: S^3 \to S^2$ induces an isomorphism $\eta_*: \pi_n S^3 \cong \pi_n S^2$. We let $x \in \pi_{2p}S^2$ be a *p*-torsion class. Consider the suspension $\Sigma x \in \pi_{2p+1}S^3$.

1

Show that if p is odd, then $\Sigma x = 0$.

Bonus: Show that when p = 2, Σx suspends to a generator of $\pi_5 S^3$.